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Abstract

This report contains a loose collection of studies and considerations on various limitations of
Tevatron luminosity and performance. These are either analytical calculations, computer simula-
tions, and/or investigations based on an OSDA analysis of many stores, using the JAVA packages
provided by P. Lebrun, S. Panacek, et al. The results of six dedicated or end-of-the-store machine
studies performed during my stay at Fermilab will be published separately as Tevatron study reports.
Specifically, the topics we address here comprise the expected and measured luminosity, hourglass
effect, dynamic beta function, beam lifetime at injection and in collision, beam losses at the start
of the ramp, electron-cloud build up for uncoalesced beams and for Run-IIb, potential-well distor-
tion, intrabeam scattering, and Touschek effect. The treatments of the various subjects strongly
differ in completeness and maturity. For example, the results on intrabeam scattering and Tou-
schek scattering look definitive, whereas studies of beam loss and lifetime have not reached a final
conclusion.

1 Performance Limitations

The performance appears to be limited by the following constraints and effects (and possibly others):

• the available number of antiprotons; any increase in the antiproton intensity and antiproton
production rate would linearly increase the luminosity; assuming an exponential decay of the
luminosity and a constant production rate of antiprotons between stores, we find that the longest
possible stores yield the maximum luminosity; the average lumninosity is directly proportional
to the luminosity lifetime;

• the bad beam lifetime on the proton helix at injection; for example, a measured lifetime of about
2 hours during 20 minutes of pbar injection implies that about 15% of the protons are lost;

• 5–15% losses at the start of the ramp for both proton and pbar beams; the origin of these
losses has not been clearly identified, although the longitudinal emittance appears to matter;
exploratory studies with a slower initial ramp rate would be of interest to identify the problem;

• the poor luminosity lifetime in collision, which must be due to emittance growth; optimization
and independent control of proton and pbar tunes, coupling, and chromaticity should help;

• some coherent instabilities, in particular transverse, which can happen at any time of the cycle;
they may be (and are) suppressed by chromaticity, dampers, coupling, and/or octupoles;

• quenches, instabilities, and beam loss at higher proton (and/or pbar) intensities; runs with some
of the highest currents terminated by quenches on the ramp or during the squeeze; this problems
might be aggravated as the Tevatron beam intensities are raised further in the months to come;

• possible excitation of the beam by unknown sources and so-called ghost lines in the Schottky
spectrum;
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• long-range beam-beam effects; these need to be better understood, and a model must be con-
structed that is consistent with observations and does not, e.g., predict the opposite tune shifts
(the same is true for the effect of the octupoles).

I think the three primary items are antiproton production rate, luminosity lifetime, and quenches at
higher beam intensity.

2 Luminosity

There are several effects which can modify the simple geometric luminosity formula. One relates to
the change of beta function with longitudinal position and can reduce the luminosity, if the bunches
are much longer than the interaction-point (IP) beta function (hourglass effect), another to the
change of the betafunction due to the collision itself (dynamic beta function). Yet another effect
would be an unwanted crossing angle at the collision point.

2.1 Hourglass Effect

If proton and antiprotons bunches are of Gaussian shape with equal bunch length, the luminosity
reduction from the hourglass effect is given by the factor
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If the rms bunch lengths are not the same, we have instead
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According to M. Church and P. Lebrun, the formula for the hourglass factor, Eq. (3), can be expanded
as

HG ≈ 1.1117 − 0.62504
σz
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(
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, (5)

which, somewhat surprisingly, does not equal 1 in the limit of zero bunch length. In the following
we have used this approximation as it was already implemented in the JAVA program package
(and adding complicated mathematical functions did not look to be an easy thing to do in JAVA).
Furthermore, in the later applications, we have replaced the bunch length in Eq. (5) by the geometric
mean of the rms bunch lengths for the two beams. This is not strictly correct, as can be seen from
the exact Eq. (4).

2.2 Dynamic Beta Function

The change in the antiproton IP beta function is given by

β

β0
= 1 − 2π

1

sin 2πν
ξ0(1 + cos(2∆φ − 2πν)) , (6)
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where β0 is the unperturbed beta function, ξ0 the beam-beam tune shift for one IP, and ∆φ the phase
advance between CDF and D0. This phase advance is about 7.0 (2π) for both planes (is an integer
a good choice?). For the nominal tune near 0.58, the cos term is −0.88, and the relative reduction
in the antiproton beta function is only 2% for a beam-beam tune shift of ξ0 ≈ 0.012 per interaction
point. This will hardly be noticeable. Below we will ignore this effect.

2.3 Measured and Expected Bunch-by-Bunch Luminosity

Figure 1 presents an OSDA analysis of the initial luminosity loss for stores 1906–1961. The first
plot shows that the measured initial luminosity agrees rather well with the luminosity value that is
expected from the measured intensities, emittances, and the computed hourglass factor. Indeed the
average ratio of the measured and expected luminosity is about 15% larger than 1! In the following
two plots, we show this ratio as a function of bunch no. and store number. There is some variatoin
laong each train, the highest luminosity usually being reached towards the end of each train.There
is no systematic trend over the number of stores. The fourth picture shows the ratio of measured
and expected luminosity as a function of the product of the two beam currents. There is a small
downward trend towards higher currents, perhaps statistically insignificant, or perhaps related to the
beam-beam dynamics, intrabeam scattering, or wake fields. Finally, the bottom picture compares
the measured and predicted hourglass effects as a function of the bunch length (the geometric mean
of proton and pbar bunch lengths). The measured hourglass factor varies somewhat less with the
bunch length than expected, which might partly be explained by a large error in the measured
antiproton bunch length. There is a weak evidence that the hourglass, or luminosity enhancement
factor, depends on the bunch current.

3 Beam Lifetime

3.1 Injection

It has been remarked that the beam lifetime at injection is well parametrized by a quasi-exponential
decay of the form exp(−

√

t/τ), but not by an exponential [2]. Figure 2 shows that the quasi-
exponential decay is almost indistinguishable from the decay law

N(t) =
N(0)

1 + 2t/τ
, (7)

which can be obtained if the loss rate is proportional to the square of the intensity:

dN

dt
= −αN2 , (8)

where the coefficient α is related to τ via

α =
2

τN(0)
. (9)

Figure 3 shows a recent measurement, which illustrates that the proton beam lifetime at injection
has as an acceptable value of 17.2 hours on the central orbit, but decreases to 3.4 hr, as soon as the
proton beam is moved onto the proton helix. This suggests that the bad lifetime is related either to
the reduced aperture for the off-center orbit and/or to field nonlinearities and their feeddowns.

3.2 Collision

The maximum beam lifetime that we can hope for is that determined by the total luminosity L and
the total cross section σtot (70 mbarn):

τp,p̄,max =
Np,p̄

2Lnbσtot
, (10)
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bunch-by-bunch luminosity (10^30 cm^-2 s^-1) 
for stores 1906-1961, hourglass factor computed 

for sqrt(SzP*SzA)
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Figure 1: Various pictures illustrating the relation between measured and expected initial luminosity
(top left), and its dependence on both the bunch number (top right), the store number (centre left),
and the product of the beam currents (centre right). The bottom shows the measured and the
expected hourglass factor as a function of bunch length. The expected luminosity was computed
using the approximation of Eq. (5) and inserting for σz the geometric mean of the rms bunch lengths
for the two beams.
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Figure 2: Comparison of exponential, quasi-exponential, and inverse polynomial (∝ 1/(1 + 2t/τ))
current decay.

Figure 3: Measured current decay on the central orbit (left part) and on the proton helix (right part),
December 12, 2002 (courtesy J. Annala, P. Ivanov, et al.).

5



Table 1: Fitted beam and luminosity lifetimes at 980 GeV for stores 2047 and 2049

store 2047 2049

proton lifetime τp 168 hr 221 hr
antiproton lifetime τp̄ 66 hr 60 hr
luminosity lifetime τL 22 hr 20 hr

where the factor of 2 accounts for the two interaction regions, nb is the number of bunches per beam,
and Np,p̄ refers to the bunch population or protons or antiprotons. We have evaluated this expression
for the two stores 2047 and 2049. The initial bunch intensities were Np̄ = 1.9 − 2.0 × 1010 and
Np = 1.7− 1.9× 1011 (the first lower numbers correspond to store 2049), and the initial luminosities
about 24 × 1030 cm−2s−1 in either case.

Figure 4 depicts the logarithm of the beam intensity and the luminosity as a function of time over
a time period of about 20 hours. The curve does not noticeably deviate from a straight line, i.e., the
decay is exponential. A linear fit yields the decay constants listed in Table 1.

The maximum beam lifetime according to Eq. (10) is 60 hr for the antiprotons and about 550 hr for
the protons. The fitted antiproton lifetime in Table 1 agrees with the maximum possible value. This
demonstrates that the initial antiproton beam lifetime is entirely explained by the proton-antiproton
reactions at the collision points. On the other hand, the proton lifetime is about a third to half of
the maximum value of Eq. (10), suggesting that other processes become important on this longer
time scale. Finally, and most importantly, the luminosity lifetime is only 20 hr, which is a third of
the ideal lifetime from the antiproton intensity decay rate. The short luminosity lifetime indicates a
considerable emittance growth rate on the flat top.
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Figure 4: Logarithm of beam intensity and luminosity as a function of time and linear fit for stores
2047 (left) and 2049 (right).

This hypothesis is investigated a little further in Figure 5, which shows the beam intensities,
transverse sizes, and rms bunch lengths as a function of time in collisions over about 20 hours, for
store 2076. The transverse beam sizes grow slowly, the bunch length more rapidly. It is not evident
if this alone can fully account for the poor luminosity lifetime.

It has been suspected, but not verified experimentally, that the poor luminosity lifetime in collision
is related to the high chromaticity. One effect of the chromaticity is that it changes the phase advance
from turn to turn for an off-momentum particle. This particle will thus undergo different phase
advances from collision with the opposite beam to the next. This will lead to a harmonic modulation
in the time of the beam-beam interaction at the synchrotron frequency, which could drive certain
resonances.
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Figure 5: Intensities (FBIPNG in 3 × 1012; FBIANG in 3 × 1011) transverse beam sizes from
synchrotron-light monitor (SLASH, SLASV, SLPSH, SLPSV; in mm), and rms bunch lengths (SB-
DPSS, SBDASS; in ns) for both beams as a function of time during collisions in store 2076.

For example, assuming a chromaticity Q′ ≈ 10 and considering a particle with an energy offset of
σδ ≈ 1.8 × 10−4, the change in betatron phase advance between the collisions with the centre of the
other beam on two successive turns is

∆φ = Q′2πσδ ≈ 0.011 rad . (11)

A similar effect arises, independently of the chromaticity, from the longitudinal motion of the particle:

∆φ =
∆s

β∗
= −αcCσδ

β∗
≈ −0.01 rad. (12)

This means that for a chromaticity of +10 these two effects almost exactly cancel each other. There-
fore, it is not evident that a lower chromaticity would be better.

4 Beam Loss at the Start of the Ramp

Figure 6 illustrates the beam loss and the bunch length change which occur at the start of the ramp.
The beam loss (about 6example) happens over the first 10 seconds of the ramp. The bunch-length
decrease due to adiabatic damping and/or longitudinal shaving continues monotonically over a much
longer time.

We have tried to fit the measured relative proton beam loss during the ramp ∆Np/Np (where Np

is the proton bunch intensity at the start of HEP) as a linear combination of 20 (or more) variables,
namely: (1) the proton transverse emittances and rms bunch length before the ramp (εxp, εyp, σzp),
(2) the proton and antiproton bunch intensities (Np and Npb), (3) the square of all these variables
and their second-order cross products ((∆εxp)

2 ≡ (εxp − ε̄xp)
2, (∆ε2

yp, ∆σ2
z , ∆εyp∆σz, ∆εxp∆σz,

∆εxp∆εyp, ∆εyp∆Np, ∆εxp∆Np, ∆εyp∆Np), (4) the bunch number in the train, and (5) the three
time intervals extending from the ‘start of ramp’ to ’HEP’, from ‘Pbar Injection porch’ to ‘start of
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Figure 6: Relative total beam loss, bunched beam loss, and increase in beam energy as a function
of time at the start of the ramp (left); relative decrease in bunch length and intensity for individual
bunches (right).
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ramp’, and from ‘Proton Injection porch’ to ‘start of ramp’. Optionally, sometimes higher powers or
products of these variables were included as well, in an attempt to improve the fit quality.

More precisely, we tried to express the beam loss as follows:

∆Np

Np
(i) = a1εxp(i)+a2εyp(i)+a3σzp(i)+a4Np(i)+a5Npb(i)+a6(∆εxp(i))

2+. . . ≡
N
∑

j=1

ajv(i, j) , (13)

where i counts the number of bunches and stores, and j the variables on the right-hand side, whose
total number is N . The coefficients aj are to be fitted. Note that from all variables on the right-hand
side the average value is subtracted. If we normalize these variables to their respective rms variation,
as

∆Np

Np
(i) =

20
∑

j=1

ãj
v(i, j)

√

1
M

∑m
i=1 v(i, j)2 −

(

1
M

∑M
i=1 v(i, j)

)2
, (14)

the normalized fit coefficients ãj directly reflect the relative importance of the individual variables.
Our analysis included the 36 bunches, for all the ‘good’ stores between store no. 1906 and no. 1997.

The total number of data points is about M ≈ 1000.
We applied two completely different algorithms to compute the fit coefficients.
The first algorithm was proposed by P. Emma and T. Lohse [4] for fitting beam trajectories. It takes

into account the measurement error for the target variable ∆Np/Np as well as for all the independent
variables on the right-hand side. The algorithm finds an optimum solution to the equation

u
t · z = 0 , (15)

by determining the smallest eigenvalue of the matrix

Cij =
N+1
∑

l=1

zlizlj . (16)

The corresponding normalized eigenvalue u is the desired solution. Before applying this equation,
all variables, including the target quantity ∆Np/Np on the left, are normalized, in this case not by
their variation from sample to sample, but by an estimate of the respective measurement error. We
have assumed errors of 1% for intensity, and 5% for the emittance and bunch length.

Unfortunately the Lohse-Emma fit did not work well for our problem. The correlation coefficient,

R2 =
[
∑

i(∆Np/Np)pred(i)(∆Np/Np)meas]
2

[

∑

j(∆Np/Np)pred(j)(∆Np/Np)pred(j)
]

[
∑

k(∆Np/Np)meas(k)(∆Np/Np)meas(k)]
, (17)

resulting from such a fit is poor for our problem, and the fit prediction differs strongly from the
measured beam loss, as is illustrated in Fig. 7. Using this algorithm we obtained only R2 ≈ 0.03,
though this value might depend on the choice of the error magnitude for the individual variables. In
addition, the fit coefficients changed by orders of magnitude (including their sign) depending on how
many other variables were included, and depending on the maximum order of the terms included
(We considered terms up to 4th order, e.g., (∆εxp)

4.)
A better approach turned out to be the following, based on a singular-value decomposition (SVD)

[5]. We do not take into account the measurement errors and rewrite the fit equation as

n = Va , (18)

where a is the vector of ncor coefficients to be determined, and n is the huge ndata-component vector
of beam-loss data points. The matrix V has ndata rows and ncor columns. It can be decomposed
and inverted using SVD. That is, the matrix V can be expressed as

V = UΛW
t , (19)
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eigenfit analysis of beam loss on the ramp
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Figure 7: Measured vs. fitted relative beam loss on the ramp ∆Np/Np, normalized to start intensity
at HEP, obtained from the Lohse-Emma ‘eigenfit’ analysis for a certain set of error bars.

where the matrix Λ is a diagonal, and U and W are orthonormal. When inverting Λ we can set the
inverse of small diagonal elements to zero, in order to avoid that degeneracies blow up the magnitude
of the coefficients without sensibly contributing to the fit quality.

Figure 8 shows the dependence of the SVD fit results on the number of the largest singular values
taken into account. A minimum of seven values must be included to get a reasonable squared
correlation coefficient, of about 0.5. This indicates that about half of the observed variation can be
related to changes in the fitted variables, and that the system has at least ‘7 degrees of freedom’.
Figure 9 compares the measured beam losses with the fit prediction, for various numbers of singular
values retained. These SVD fits appear much superior to what could be achieved with the Lohse-
Emma fits, for this particular application.

Table 2 lists the normalized coefficients ãj of Eq. (14) obtained by various fits, where all variables
vj are normalized to their rms variation, and thus the magnitude of the coefficients directly reflects
the relative sensitivity. We note that the coefficients strongly vary depending on which of the two
fitting algorithms is used, and, for the SVD technique, how many eigenvalues are retained. There is
an indication that the beam loss is sensitive to the rms bunch length, the proton intensity, the square
of the vertical emittance, the square of the bunch length, and the time between HEP and start of
the ramp (the last correlation might reflect a common origin rather than a causal connection). Table
3 lists the corresponding unnormalized coefficients aj of Eq. (13) for the two SVD fits, where the
associated variables have the same units as retrieved from SDA.

5 Electron Cloud

On December 10, the emittance growth on the ramp was studied for an uncoalesced beam, by
J. Annala, B. Hanna, et al. They observed that the pressure strongly increased in four of the
straight sections, when the number of bunches exceeded a threshold value of about 30, and the
bunch population a value of about 4 × 1010. The observed threshold behavior of the pressure as a
function of beam current is illustrated in Fig. 10.

The characteristics of the Tevatron pressure rise highly resemble the electron cloud build up due
to beam-induced multipacting which has been observed since about three years in the CERN SPS,
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and ‘HEP’ as a function of the number of singular values retained in the SVD fit.
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Figure 9: Measured vs. fitted relative beam loss on ramp ∆Np/Np, normalized to start intensity at
HEP, if different numbers of singular values are retained in the SVD matrix inversion.
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Table 2: Fitted coefficients ãj for the ‘normalized’ variables.

variable εxp εyp σzp Np̄ Np ∆εxp)
2 (∆εyp)

2 σ2
z

N2
p̄

N2
p

eigenfit 0.210 −0.108 0.487 0.406 −0.393 −14.758 −4.823 −3.446 0.324 2.531
SVD (16 sing. values) 0.090 0.067 −0.001 0.066 0.113 0.002 −0.041 0.000 0.022 −0.006
SVD (20 sing. values) 0.088 0.066 0.224 0.061 0.123 0.127 0.0226 0.230 0.014 0.035
variable εypσzp εxpσzp εxpεyp εypNp εxpNp σzNp ibunch ∆tramp ∆tp̄inj ∆tpinj

eigenfit 6.466 −5.922 15.735 2.065 0.246 1.735 7.358 −0.706 −0.308 -1.122
SVD (16 sing. values) 0.012 −0.005 −0.023 0.023 −0.001 0.032 0.007 0.325 0.020 −0.066
SVD (20 sing. values) −0.010 0.060 −0.211 −0.102 0.040 0.028 0.024 0.333 0.031 −0.054

Table 3: Fitted coefficients aj for the unnormalized variables.

variable εxp εyp σzp Np̄ Np ∆εxp)
2 (∆εyp)

2 σ2
z

N2
p̄

N2
p

SVD (16 values) 0.038 0.017 −0.003 0.001 0.006 0.000 −0.002 −0.001 0.000 0.000
SVD (20 values) 0.037 0.016 0.497 0.008 0.007 0.006 0.001 0.277 0.000 0.000
variable εypσzp εxpσzp εxpεyp εypNp εxpNp σzNp ibunch ∆tramp ∆tp̄inj ∆tpinj

SVD (16 sing. values) 0.000 0.004 −0.002 −0.001 0.000 0.002 0.001 0.001 0.000 0.000
SVD (20 sing. values) −0.003 0.025 −0.010 −0.001 0.000 0.001 0.002 0.001 0.000 0.000

Figure 10: Measured pressure increase in several Tevatron straight sections (three of the curves) for
an uncoalesced beam if the current (blue curve) exceeds a threshold, as observed on December 10,
2002 (courtesy J. Annala, B. Hanna, et al.).
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Table 4: Electron-cloud simulation parameters for uncoalesced or colaesced beams.

parameter symbol uncoalesced coalesced

bunch spacing Lsep 5.67 m
bunch population Nb 2 − 4 × 1010 2.5 − 3.5 × 1011

rms hor. beam size σx 1.5 mm 1.5 mm
rms vert. beam size σy 1.0 mm 1.0 mm
rms bunch length σz 0.54 m 0.54 m
number of successive bunches nb 40 40
max. secondary emission yield δmax 1.5–1.9 1.5–1.9
incident energy at maximum εmax 300 eV 300 eV
elastic electron reflection included included
vacuum pressure p 10 ntorr 10 ntorr
region dipole & field-free field-free
chamber half aperture hx,y 25 or 35 mm 25 or 35 mm

as well as at many other accelerators. A recent comprehensive review of this phenomenon can be
found in the proceedings of the ECLOUD’02 workshop [6].

In the Tevatron, the bunch spacing of the uncoalesced beam is 18.9 ns, and, hence, it is similar to
the LHC-beam bunch spacing in the SPS. The threshold bunch current is also similar to the threshold
seen in the SPS at the start of a run, prior to any conditioning. It is interesting that simultaneously
with the pressure increase, also the beam Schottky power was enhanced, and a series of sudden strong
excitations were seen in the tune waterfall display. Perhaps accidentally, the emittance growth during
the ramp, on the central orbit, was slightly larger (by about 4πmm mrad) than the emittance growth
normally obtained on the proton helix for a regular (coalesced) beam with 396-ns spacing. We
might speculate that part of this additional emittance growth was due to electron-cloud induced
instabilities. In the Tevatron fixed-target operation, a pressure rise was not observed. The usual
number of protons for this mode of operation is 2.5 × 1013, distributed over 83 × 12 bunches, or
2.5 × 1010 protons per bunch, which is below the threshold of 4 × 1010 determined here.

We ran a few computer simulations using the ECLOUD code [7], in order to verify that an electron
cloud would indeed be expected to occur in the Tevatron for the beam conditions at the time of the
above observations. In addition, we performed some simulations for a coalesced beam in Run-IIb
conditions with 132 ns spacing. The relevant parameters assumed for either series of simulations are
compiled in Table 4.

Figure 11 shows the simulated electron-cloud build up for an uncoalesced beam of 40 bunches
followed by a long gap without beam. In these simulations we considered various bunch populations,
two chamber radii, three different values for the maximum secondary emission yield, and either a
dipole field or a field-free region. For the highest secondary emission yield, δmax = 1.9, close to
that for an unconditioned surface, an electron cloud builds up in most of the cases, except for those
with the lower bunch intensity Nb = 3 × 1010. The simulated build up appears to be stronger in
a dipole than in the regions without magnetic field. It appears that for the uncolaesced beam the
build up is stronger and has a lower threshold, if the chamber radius is 25 mm, as compared with 35
mm. Though not evident in the pictures, the build up will stop due to space-charge compensation
when the line density of the electrons approaches the average line density of the protons, that is the
electron-line density cannot exceed the value λe ≈ Nb/Lsep ≈ 7 × 109 m−1.

Figure 12 presents simulation results for Run-II beam parameters, with 132-ns spacing and three
different proton bunch intensities around Nb = 3× 1011. In this case, the threshold is lower, and the
build up faster, for the chamber with the larger (35 mm) radius. This can be attributed to the much
larger bunch spacing. Note that this simulation did not include the effect of the antiproton bunches.
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Since the charge of the latter is much lower, this is a good first approximation. However, future more
detailed simulations should include the passage of the antiproton bunches as well.

6 Potential Well Distortion

Following A. Chao and A. Hofmann [3], we consider a purely inductive wake with

∫ ∞

z
dz′ ρ(z′)W ′

0(z − z′) = Sρ′(z) , (20)

which corresponds to the impedance

Z|| = i
Sω

c2
, (21)

the lengthening of a paraboblic distribution due to potential well distortion is given by the fourth
oder equation:

(

ẑ

ẑ0

)4

+ D
ẑ

ẑ0
− 1 = 0 . (22)

The unperturbed full bunch length is 2ẑ0. The perturbed bunch length is 2ẑ. There is only one
parameter D, which is proportional to the product of intensity and impedance,

D = −i
3Nbrpηc2c2

2ω2
sγCω0ẑ

3
0

(

Z||

n

) (

4π

Z0c

)

, (23)

where, for our purposes, the slippage factor η ≈ αC ≈ 0.0028, and we have added a conversion factor
to SI units. We can solve Eq. (22) for D or Z||/n:
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∣

∣

. (24)

At the Tevatron the momentum spread can be inferred from two horizontal wire scans with different
ratio of beta functions to dispersion. The bunch length is measured by the sampled bunch display
(SBD) and can be converted into an equivalent momentum spread. If bunch lengthening exists, the
momentum spread estimated from the bunch length should be larger than that from the wire scans.
This is indeed the case, as illustrated in Figs. 13 and 14. Figure 13 shows that, for protons, the
two values of the momentum spreads are very well correlated with a systematic offset towards higher
bunch lengths. Figure 14 displays the ratio of the two as a function of bunch intensity. Extrapolation
to zero gives a ratio of 1.03, close to 1, as it should be. For an intensity of NB = 2 × 1011 protons
per bunch, the ratio is 1.16, indicating a bunch lengthening ẑ/ẑ0 of about 7%.

Assuming a 7% increase in bunch length at Nb = 2×1011 with a nominal bunch length of about 0.6
m, we estimate a longitudinal impedance of 6–7 Ω, which is 2–3 times larger than the estimate of 2–3
Ω in the Run-II handbook, but still a factor of 2–3 below the predicted threshold of the longitudinal
microwave instability.

7 Intrabeam Scattering

The IBS growth rate can be computed for any optics, with and without helix etc., using the MAD
program, which uses the formalism developed by J. Bjorken and S. Mtingwa [8]. We multiply the
growth times obtained from MAD by a factor of 2 to convert them into beam-size growth times.
Then, for the proton beam parameters at injection and in collision listed in Table 5, we find the
growth rates given in Table 6, using the MAD optics file v3h01v2 new new.lat for 150 GeV and
v3h15av2.lat for 980 GeV.

14



0

50000

100000

150000

200000

250000

300000

350000

0 5e-07 1e-06 1.5e-06 2e-06

SEY=1.9, Nb=3e10, no field, radius=25 mm
SEY=1.7, Nb=3e10, no field, radius=25 mm
SEY=1.5, Nb=3e10, no field, radius=25 mm

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

0 5e-07 1e-06 1.5e-06 2e-06

SEY=1.9, Nb=3e10, no field, radius=35 mm
SEY=1.7, Nb=3e10, no field, radius=35 mm
SEY=1.5, Nb=3e10, no field, radius=35 mm

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

1.8e+08

0 5e-07 1e-06 1.5e-06 2e-06

SEY=1.9, Nb=4e10, no field, radius=25 mm
SEY=1.7, Nb=4e10, no field, radius=25 mm
SEY=1.5, Nb=4e10, no field, radius=25 mm

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

300000

0 5e-07 1e-06 1.5e-06 2e-06

SEY=1.9, Nb=4e10, no field, radius=35 mm
SEY=1.7, Nb=4e10, no field, radius=35 mm
SEY=1.5, Nb=4e10, no field, radius=35 mm

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

1.4e+10

0 5e-07 1e-06 1.5e-06 2e-06

SEY=1.5, Nb=4e10, dipole
SEY=1.7, Nb=4e10, dipole
SEY=1.9, Nb=4e10, dipole

0

2e+09

4e+09

6e+09

8e+09

1e+10

1.2e+10

0 5e-07 1e-06 1.5e-06 2e-06

SEY=1.9, Nb=4e10, dipole, radius=35 mm
SEY=1.7, Nb=4e10, dipole, radius=35 mm
SEY=1.5, Nb=4e10, dipole, radius=35 mm

Figure 11: Simulated electron line density per meter as a function of time in seconds during the
passage of 40 bunches of uncoalesced beam followed by a gap of 44 ’missing bunches’, for various
bunch populations, fields, and maximum secondary emission yields. Top row: Nb = 3× 1010 protons
per bunch and field-free region, centre row: Nb = 4 × 1010 protons per bunch and field-free region,
bottom row: Nb = 4×1010 protons per bunch and dipole; left: chamber radius 25 mm, right: chamber
radius 35 mm.
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Figure 12: Simulated electron line density per meter as a function of time in seconds during the
passage of 40 bunches of coalesced beam with 132 ns spacing (for Run-IIb) followed by a gap of 44
‘missing bunches’, for various intensities and a maximum secondary emission yield of δmax = 1.9.
Top row: field-free region, bottom row: dipole field; left: chamber radius 25 mm, right: chamber
radius 35 mm.
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Figure 14: Ratio of the two momentum spreads, inferred from wire scanner and BDS, respectively,
as a function of bunch intensity for stores 1906–1961 and a linear fit.

To gain more insight we can alternatively employ a simplified formula recently derived by K. Bane
[10], which reads

1

Tp
≈

r2
pcN(log)

32γ3ε
3/4
x ε

3/4
y σsσ3

p

〈

σHg(a/b)(βxβy)
−1/4

)

(25)

1
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σ2
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, (26)

where
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σH

γ

√

βx

εx
, b =

σH
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√

βy

εy
, (27)

1
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σ2
p

+
Hx

εx
+

Hy

εy
, (28)

and
g(α) ≈ 2α(0.021−0.044 ln α) . (29)

The angular brackets signify that the enclosed quantities, combinations of lattice and beam parame-
ters, are averaged over the entire ring. These averages can also be extracted from the MAD program,
which allows us to cross-check the MAD IBS calculations with K. Bane’s approximation. Finally,
we can go one step further and replace the average over products and square roots of quantities by
the product and square roots of the averages, so that only the average beta function and the average
dispersion invariant are needed to compute the expression.

The IBS growth rates inferred from the Tevatron optics by means of Eqs. (25) and (26) or its
simplified version using average quantities are also listed in Table 6.
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Table 5: Proton-Beam Parameters at Injection and Top Energy

energy E 150 GeV 980 GeV
norm. hor. emittance (1σ) γεx 3.5 µm 3.5 µm
norm. vert. emittance (1σ) γεy 3.5 µm 3.5 µm
rms bunch length σz 1.125 m 0.71 m
rms energy spread σδ 7.3 × 10−4 1.79 × 10−4

bunch population Nb 2 × 1011 2 × 1011

rf voltage Vrf 1 MV 1 MV
rf frequency frf 53 MHz 53 MHz
harmonic number h 1113 1113
circumference C 6283.2 m 6283.2 m
betatron tunes Qx,y 20.58 20.58 m
average beta function <

√

βxβy > 56 m 65 m

An analysis by K. Bane shows that the slight disagreement between his formula and the MAD
result for the Tevatron may be explained by a non-zero value of < ζx >; namely we find < ζx >≈ 0.26,
as is illustrated in Fig. 15.

Figure 15: Plot of ζx = vs. longitudinal position s around the Tevatron (Courtesy Karl Bane).

The IBS growth rates for the 150-GeV case were calculated independently by Karl Bane. For the
longitudinal growth time he found 200 hr using the average quantities, 169 hr averaging his formula
(25) around the ring, 221 hr evaluating the Bjorken-Mtingwa expression, and 210 hr making the
approximation of the SAD program, which corresponds to Eqs. (4.5)–(4.6) in the report by Bjorken-
Mtingwa. Similarly, for the horizontal growth rate he obtained 47 hr using the averages, also 47 hr
when using his approximation (26), 59 hr from Bjorken-Mtingwa, and 57 hr from SAD. Figure 16
compares the local growth from the full theory of Bjorken-Mtingwa with K. Bane’s approximation.
The differences arise primarily in the peaks of 1/τ|| ane 1/τx.

We have verified that turning on or off the helix changes the longitudinal and horizontal growth
rates computed by MAD by less than 0.5%. Hence, for the IBS calculation we can ignore vertical
dispersion and betatron coupling due to the helix. We should mention though that we may have
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Table 6: IBS growth times computed by the Bjorken-Mtingwa algorithm in MAD, by K. Bane’s
approximation, Eqs. (25) and (26) [‘Bane approx.’], and by using only the average beta function and
dispersion invariant [‘Bane ave.’].

injection collision
MAD (B.-M.) Bane approx. Bane ave. MAD (B.-M.) Bane approx. Bane ave.

τp 224 hr 178 hr 202 hr 80 hr 84 hr 98 hr
τx 59 hr 40 hr 49 hr 49 hr 42 hr 49 hr
τy −9980 hr 4330 hr 4890 −340000 hr 15920 hr 18565

Figure 16: Local growth rates according to the Bjorken-Mtingwa theory compard with those of
Eqs. (25)–(26).
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some doubts whether MAD correctly takes into account the coupling, when it computes IBS rise
times.

8 Touschek Scattering

This refers to single scattering events transferring particles out of the rf bucket. The loss rate from
the bucket is described by

dNb

dt
= αN2

b , (30)

which, after integration, yields the amount of coasting beam as

Ncoast =
αN0t

1 + αN0t
N0 , (31)

where N0 ≡ N(0) is the initial bunch population. The Touschek scattering rates for LHC and HERA
were studied in Ref. [11], where we also quoted and compared formulae from various authors.

Traditionally most of the Touschek theory was developed for flat electron beam. A formula for
round beams was first derived by Miyahara [12]. After correcting his result by a factor 1/2, the
coefficient α is

α =
πr2

pc

γ4

βxβy

σxσyV η
D

(

δq

η

)

, (32)

with
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u

ε

))

du . (33)

In the above expressions, V = 8π3/2σxσyσz is the bunch volume, c the speed of light, γ the energy
divided by the rest mass, η = (∆E/E)max the energy acceptance of the rf bucket, and δq = γσx/βx.
The energy acceptance is

η ≡
(

∆E

E

)

max
=

(

2e

παcE0

Vrf

h

)1/2

. (34)

Note that a formula for arbitrary aspect ratio was derived by Piwinski [13, 14]. For a round beam
it gives the same answer as Miyahara’s.

Using the parameters of Table 7, we find initial Touschek lifetimes τ = 1/(N0α) of 5400 hr at
injection and 4000 hr at 980 GeV. This implies that after 1 hr, the fraction of coasting beam (outside
the rf bucket) is about 2 × 10−4 in either case, due to Touschek scattering alone.

Figure 17 displays an example of coasting beam measured in the Tevatron.
In order to compare this measurement with the prediction, we compute the initial and final Tou-

schek coefficients using the beam intensity and the bunch length at the start and end of the store
(initial and final intensities of 1.8 × 1011 and 1.3 × 10−11; initial and final bunch lengths of 2.1 ns
and 2.5 ns). The initial Touschek coefficient of α = 3.9× 10−19 s−1 decreases to α = 3.2× 10−19 s−1

at the end of the store. To take into account this variation of α, we may in a first approximation
linearly interpolate between its initial and final value: α = α0 + α1t. The coasting beam is then
generated at the rate

dN

dt
= −(α0 + α1t)N

2 , (35)

with the solution

Ncoast =
α0N0t + 1

2α1t
2N0

1 + α0N0t + 1
2α1N0t2

N0 . (36)

The predicted loss rate from Touschek scattering is also depicted in Fig. 17. At the beginning of the
store, the Touschek scattering dominates all other beam-loss mechanisms. However, it is responsible
for only a small fraction of the losses at the end of the store. In other words, the Touschek scattering
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Figure 17: Example of coasting beam generation in the Tevatron for store 1955, showing the proton-
bunch intensity (top left), rms bunch length (top right), local loss rate measured by CDF E0LABT
(bottom left), and the total relative loss rate estimated from the measured local rate superimposed
on which is the expected loss rate from Touschek scattering (bottom right), all as a function of
time. The theoretical estimate assumes a ratio of 1875 between the actual total proton loss rate
in Hz and the measured signal A calibration factor was determined by A. Tollestrup for a different
detector (LOSTP); a comparison of the signal levels in E0LABT and LOSTP for this store yielded
the conversion ratio 1875 mentioned above.
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Table 7: Tevatron Parameters at Injection and Top Energy.

variable symbol value (inj.) value (top)

rms horizontal beam size σx 1 mm 0.4 mm
rms vertical beam size σy 1 mm 0.4 mm
rms bunch length σz 0.75 0.75
average beta function βx,y 49 m 49 m
momentum compaction factor αc 0.0028 0.0028
beam energy E 150 GeV 980 GeV
number of protons / bunch Nb 2 × 1011 2 × 1011

revolution time T0 21 µs 21 µs
transverse emittance εx,y 22 nm 3.4 nm
relativistic factor γ 160 1045
bunch volume V 33400 mm3 5346 mm3

rms uncorrel. trans. momentum in units of mc2 δq 0.0023 0.0062
rf voltage Vrf 1 MV 1 MV
harmonic number h 1113 1113
energy acceptance η 1.1 × 10−3 4.5 × 10−4

can account for all initial losses, but it does not explain later increases in the loss rate. The latter
might rather be due to intrabeam scattering or rf noise.

We have not yet examined how the theory developed by Miyahara and Piwinski should be modified
when the beam fills the entire rf bucket.
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